Developments in Shoulder Arthroplasty

Andrew L. Wallace

PhD MFSEM FRCS FRACS
Consultant Shoulder Surgeon

fortiusclinic

Excellence in orthopaedic and sports injury treatment

Glenohumeral Joint Arthritis

Relatively uncommon

Not as common as hip/knee/hand

UK National Joint Registry 2016:

Hips 183107

Knees 113023

Shoulders 7369

Elbows 762

Causes of Glenohumeral Joint Arthritis

Primary

Unknown

Genetic

Dysplasia?

Secondary

Caused by something else

Causes of Glenohumeral Joint Arthritis

Secondary:

(i) Atraumatic osteonecrosis

Alcohol induced

Corticosteroid therapy

Cytotoxic drugs

Radiation

Sickle cell disease

(ii) Inflammatory joint disease

Rheumatoid

Gout

Causes of glenohumeral joint arthritis

(iii) Post-traumatic

Dislocation (too loose)

Intra-articular fractures

Malunion of the proximal humerus

(iv) Post-surgical

Capsulorrhaphy arthropathy (too tight)

Intra-articular hardware (e.g., screws, staples, anchors)

Infection

Presentation

Pain

Global Pain

Posterior jointline

Stiffness

Crepitus

Slowly progressive

GHJ arthritis - Examination

Stiffness Global loss of motion

Active and passive ROM

Crepitus Coarse and deep

Audible and palpable

Rotator cuff Strong

Negative impingement

Early GHJ arthritis

Beware the active middle-aged male

Ongoing shoulder pain

Not settling

Ache after exercise

Subtle instability

Normal Xray
MRI useful

Differential diagnosis

Frozen shoulder!

Xrays are the answer:

Loss of joint space

Osteophytes

Subchondral sclerosis

Subchondral cysts

GHJ arthritis: imaging

CT

Doesn't help diagnosis

Does help surgical planning

?enough bone stock

MRI

?cuff tear

?repairable

?degree of muscle wasting

Treatment options

Nonoperative

Rest, ice, heat, NSAIDs

Physiotherapy to maintain ROM

Injection therapy

- steroids

- hyaluronan

Operative

Arthroscopy

Arthroplasty

- resurfacing

- replacement

The birth of total shoulder arthroplasty

Shoulder replacement first performed in 1893 by a French surgeon, Jules Emile Pean

Platinum and rubber

1950's Charles Neer
Columbia Presbyterian NYC

Modern CoCr prosthesis

Monobloc humerus

Keeled polyethylene glenoid

First generation TSR

Cemented monobloc CoCr stem + head Keeled cemented polyethylene glenoid

- Lots of cement (both components)
- Limited sizes (x3); uniaxial stem
- Make the patient fit the <u>implant</u>
- Difficult to revise if loose
- After 10 years: glenoid lucency 30-50% revision 5-10%

The birth of total shoulder arthroplasty

Surface replacement arthroplasty

1980's Steve Copeland (Reading UK)

Stems were problematic

Large amounts of perfectly decent bone

was being removed

Surface problem only

Access to glenoid difficult

Most were hemiarthroplasty

Surface replacement arthroplasty

Issues with hemiarthroplasty

Pros Easy and quick procedure

No need for glenoid exposure

Allows biologic resurfacing: 'Ream and run'

Modular implants make revision easy!

Cons Pain

Erosion

Biological resurfacing doesn't last

Revision to TSR not so easy!

Issues with hemiarthroplasty

Issues with hemiarthroplasty

Second generation TSR

More options!

Modular humeral head sizes
Titanium cementless stems

Ingrowth capability

Pegged

Metalbacked polyethylene

Second generation TSR

Third generation TSR

Based on normal anatomy Variable!

Offset humeral head
Variable neck shaft angle
Shorter cementless stems

Make the implant fit the <u>patient</u>

Third generation TSR

Recent developments in TSR

Partial resurfacing

Stemless humeral implants

Trabecular metal (tantulum) composite glenoids

Newer bearing materials to reduce wear

- ceramic
- pyrocarbon
- polyethylene (crosslinked, Vitamin E)

Computer guided navigation

Antibiotic impregnated spacers for infection

Partial resurfacing (Hemicap)

Partial resurfacing (Hemicap)

Outcome of 'inlay' partial arthroplasty

19 patients

Average age 48 years

Followup 3 years

ROM improved by 20-30 degrees in elevation and ER

90% satisfaction

No loosening, fracture, osteolysis

Revisions: x 1 for glenoid wear

x 1 for infection and SSC rupture

Sweet et al 2015

Arthroplasty – current designs

Arthroplasty – current designs

Arthroplasty – current designs

Challenges for current generation of TSR

Minimise bone resection

Replicate native anatomy

Secure fixation

Integration

Durable

Facilitate revision

Convertible

Cost effective

Rehabilitation

Phase I: protect SSC repair (limit ER to 30)

(0-4w) active assisted elevation (pulley)

elbow and scapular setting

Phase 2: resume driving

(4-8w) progress to full range

isokinetic strengthening

Phase 3: conditioning for RTS

(8-12w) swimming

Outcomes of TSR

Glenoid component at 8 years (Kilian 2017)

- radiographic lucency: 36% keeled; 44% pegged

- implant revision: 20% keeled; 7% pegged

Midterm results of 2nd Generation TSA (Schoch 2017)

7.5% reoperation rate for all causes (instability, infection, cuff failure, fracture, loosening)

Equates to a failure rate of 1% per year after 2 years

Survivorship 90% at 10 years

Glenoid lucency still an issue

Return to sport (Aim et al 2017)

Meta analysis of 613 patients

Mean age 72 years

Better than expected

Golf, tennis, swimming

81% overall return to sport

- 79% golf
- 76% swimming
- 64% tennis

Lower rate with reverse TSR

TSA – poor prognostic factors

Younger patient, especially male

< 65 years: 17% revised at 10 years

54% glenoid lucency

60% survivorship at 20 years

Obesity

Diabetes

Parkinson's disease

Smoking

TSR in cuff arthropathy

Cuff tear arthropathy (Milwaukee shoulder)

End stage cuff disease
Painful, swollen
Severe wasting

Pseudoparalytic shoulder Loss of fulcrum

TSR in cuff arthropathy

Reverse TSR in cuff arthropathy

Grammont 1980s (Dijon, France)

 $M = F \times d$

Stable fulcrum

Less force needed for elevation

Limited rotation

Reverse TSA

Pain relief

Overhead function

Rapid rehabilitation

Good for elderly patients

- CTA
- failed cuff repair
- fractures

Complications and challenges

Deformity

Overtensioning of deltoid

Scapular stress fracture

Infection

Instability

Complications – reverse TSR

Complications – reverse TSR

Scapular notching

Premature liner wear

? Earlier loosening

Notching in reverse TSR

476 patients at a minimum of 2 years

Prevalence of 10%

Poorer clinical outcomes Less strength Less ROM Higher complication rate

Mollon 2017

Developments – reverse TSR

Glenosphere size (36, 38, 39, 42)

Neck shaft angle (135 vs 150 deg)

'BIO' (bony increased offset) reverse TSA

Inferior placement, tilting, eccentric glenosphere

'Platform' systems

Developments – reverse TSR

Rehabilitation of reverse TSR

Phase 1: active assisted elevation (pulley)

(0-4 w) supine rotation (stick)

avoid full ER/IR

Phase 2: active elevation and rotation

(4-12w) elbow flexion/extension

scapular setting

Phase 3: deltoid strengthening

(12w +) swimming

return to activity

Outcomes of reverse TSR

Constant score: 25 to 83

Subjective shoulder value: 27 to 90%

Complication rate: 7-10%

Loosening: 1-2% at 7.5 years

Return to sport (Liu 2016)

- overall 86%

- tennis, golf 60%

- rowing, fishing 100%

Utility of national shoulder registries

Diagnoses

Patient demographics

Indications

Procedures

Prostheses

Revision (reason, rate, timing)

Globally > 250 000 entries

Incidence of shoulder arthroplasty / 10⁵

Germany	34
Australia	16
New Zealand	16
Denmark	19
Sweden	13
Norway	10
UK	6

Netherlands ?

Conclusions

Shoulder arthroplasty is increasing

Indications are expanding

Patient expectations are high

Technology continues to evolve rapidly

Registries will have a important role

No implant yet lasts a lifetime

Glenoid durability still the weak link

Conclusions

The best outcomes can be achieved by...

the right patient	30%
the right surgeon	30%
the right therapist	30%

the right implant 10%

fortiusclinic

Excellence in orthopaedic and sports injury treatment